

LA-UR-21-20182

Approved for public release; distribution is unlimited.

Title: Module 4 Hand-Stacking and Remote Approach to Critical Using the

Planet/Comet Assembly

Author(s): Sanchez, Rene Gerardo

Grove, Travis Justin Cutler, Theresa Elizabeth

Intended for: This presentation will be used as part of the training that students

get when they take the Nuclear Criticality Safety Class in Nevada.

Issued: 2021-01-08

Module 4 Hand-Stacking and Remote Approach to Critical Using the Planet/Comet Assembly

Unclassified LA-UR-21

Prepared by Rene Sanchez, Travis Grove, and Theresa Culler

Goals

- •To ensure students gain a working knowledge of how to apply the "½-way" and "¾" safety rules for performing a "hand-stack" operation.
- •To ensure students gain a working knowledge of how changes in moderator and reflector geometry affect the criticality of a system.
- •To ensure students gain experience using the Inhour equation relating reactivity and reactor period.

Module 4 Part 1: Hand-Stacking

What Do We Want To Do?

Demonstrate Moderation

- The poly/lucite plates act as a moderator and reflector
 - Lots of hydrogen, a good moderator!
 - Mimics a fissile solution system

HOW?

We want to interleave thin HEU foils in between polyethylene/Lucite plates

HDP H density 123% of H₂O Lucite H density 85% of H₂O

Class Foils (HEU)

Uranium Metal Foils 9.0-in square by 0.003-in thick

Starting with foils in a Can

Mass per foil: ~70 g

Total number of foils: 26

Total Mass in Can: ~1,800 g

93.19 wt% ²³⁵U

Average Density: 17.25 g/cc

²³⁵U metal mass limit in CSED: 10,000 g
Why are we ok at the start, if we know we have enough material to go prompt critical?

Class Foil Experiment

If we stack enough foillucite/poly plate units together, we will achieve a critical configuration

Fuel units consist of

laminated uranium metal foils and polyethylene or lucite plates

Handstacking

If we stack enough foil-poly/lucite plate units together, we will achieve a critical configuration

- Configuration:
 - Top Reflector: 3" poly/lucite
 - Units: X number of poly or lucite/foil "units"
 - Bottom Reflector: 3" poly/lucite

Initial Fuel Load

Take a neutron count after configuration is fully assembled.

Second Loading

Add one unit and take another neutron count after configuration is fully assembled.

Approach to Critical – Safety Rules

- Everyone is responsible for safety.
- Initial and second fuel loadings must be safe.
- •Follow the 1/M critical approach curve.
- Limit hand-stacking (¾-rule).
- •Limit rate of fuel addition (1/2-way rule).

Approach to Critical

- We do an approach to critical:
 - Start with only a few units (very safe, very subcritical)
 - By hand, on a cart (handstack)
 - Slowly add units to a single stack and use neutron detector to detect neutrons
 - Use simple calculations to estimate how many units we need to go critical
 - Stop well below our critical estimate!

Criticality Safety Workshop Data Sheet and Data Graph

Units	Counter 1	Counter 2	Counter 3	Counter 4	Total	М	1/M	Predicted Critical	1/2 Way	3/4 Rule
	+									

Approach to Critical Rules

- We have rules that we follow for worker safety when performing the approach to critical (1/M Approach to Critical)
 - The first and second configurations must be subcritical
 - We linearly extrapolate between the last two data points to estimate the critical configuration
 - Half-way rule: A single step can only go up to half-way to the critical estimate
 - Three-quarter rule: When handstacking (on the cart), we have to stop when we get to 75% (3/4) of the estimated critical mass, which corresponds to k_{eff}=0.90

Critical Mass Determination (1/M)

Step	Action
1	Determine base count rate
2	Add additional material (fuel, reflector, etc.).
3	Measure new count rate, and plot new 1/M.
4	Extrapolate to critical mass (1/M) = 0.
5	Determine safe addition for next step (based on ¾- and ½-way rules).
6	Repeat steps 2-5 to approach critical.

Fuel mass, liquid level, control rod position, etc.

Fuel mass, liquid level, control rod position, etc.

Approach to Critical Rules

Half-way rule:

(# units in assembly + # units expected critical)/2

Three-quarter rule:

units expected critical *0.75

Approach to Critical Rules

Units in the Stack

Relative Multiplication

$$C_0 = \varepsilon SM_0\Omega$$
 where

C is count rate

ε is the efficiency of the detector

S is the neutron source (n/sec)

 M_0 is the initial multiplication (4 foils)

 Ω is the solid angle

$$C_1 = \varepsilon SM_1\Omega$$

$$\frac{c_0}{c_1} = \frac{\$\$ M_0 \hat{\Omega}}{\$\$ M_1 \Omega} = \frac{M_0}{M_1}$$

Module 4 Part 2: Remote Approach to Critical Using the Planet/Comet Assembly

Approach to Critical

How do we continue once the Handstack limit is Reached???

- Once we know what the limit is, put that portion on a moveable platform
- Put the additional units on a stationary platform
- Make certain the two stacks are well separated
 - What is "well separated"?
- Bring the two stacks together remotely
- Continue to add units to the stationary platform
 eventually go critical!
- But where could we find such a machine or machines???

Critical Masses of Homogeneous Water-Moderated U(93.2) Spheres

H/ ²³⁵U for UO₂F₂ solution

Planet Critical Assembly

• Planet is a "light-duty," general-purpose, vertical-lift assembly machine.

Comet Critical Assembly

 Comet is a "heavy-duty," general-purpose, vertical-lift assembly machine.

Planet Control Panel Display

Comet Control Panel Display

Initial Fuel Loading during Transition to

Remote Operations Add Units Here

Never more than the handstack limit (3/4 rule) on either of the two platforms during fuel loading.

Planet during Remote Operation

Comet Vertical Assembly Machine

Remote 1/M

Final Approach to Critical

When the next unit addition will be more than 1/2 way to critical:

- add next Unit,
- •use separation distance as unit for 1/M approach, and
- continue until completely closed.

1/M Using Closure

Find Critical

- Repeat until it is apparent that this unit will go critical.
- Add enough reactivity to be on a positive period.
- Find delayed critical.
- Shim with spacers, adjust the stacking, or use partial foils to adjust the excess reactivity.
- Perform measurements as outlined in the Experiment Plan.

Inhour Equation (Class Foil Experiment)

$$\rho(\$) = \frac{l}{\beta_{eff} * T} + \sum_{i=1}^{6} \frac{\beta_i / \beta_{eff}}{1 + \lambda_i T}$$

where

 $\rho(\$)$ is the reactivity in dollars

 $\beta_{eff}/1$ is the Rossi- α at delayed critical

 $\beta_{\rm eff}$ is the effective delayed neutron fraction for the system

T is the reactor period

 β_i/β_{eff} is the relative abundance for ²³⁵U for each of the six groups from thermal fission

 λ_i is the decay constant for ²³⁵U for each of the six groups from thermal fission

l is the neutron lifetime of the system

Parameters Needed for the Inhour Equation

For the Criticality Safety Class Foils Experiment:

$$\alpha(DC) = \beta/1 = 200 \text{ s}^{-1}$$

Decay Constants and Yields for ²³⁵U from Thermal Fission¹

Group Index, i	Decay Constant λ _i s ⁻¹	Relative Abundance $a_i = \beta_i/\beta_{eff}$
1	0.0124	0.033
2	0.0305	0.219
3	0.111	0.196
4	0.301	0.395
5	1.14	0.115
6	3.01	0.042

Graphical Representation of the Inhour Equation for the Class Foil Experiment

Reactivity (\$)

References

- R. R. Paternoster et al., "Safety Analysis Report for the Los Alamos Critical Experiments Facility (LACEF) and the Hillside Vault (PL-26)," Los Alamos National Laboratory repor, LA-CP-92-235, Rev. 4 (1998).
- R. Brewer, D. Loaiza, and R. G. Sanchez, "Polyethylene Reflected and Moderated Highly Enriched Uranium System with Silicon," International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC/(95)03/II, HEU-MET-Therm-001.
- 3. G. R. Keepin, *Physics of Nuclear Kinetics*, Addison-Wesley Publishing Company, Inc., Reading MA (1965).

Benchmark Data for Class Foil Experiment

Uranium Metal Foils
9.0-in square by 0.003-in thick

93.19 wt% ²³⁵U

5.43 wt% ²³⁸U

 $0.26 \text{ wt}\% ^{236}\text{U}$

1.13 wt% 234U

Average Density: 17.25 g/cc

Lamination:

Two laminated sheets 10-in square by 0.003-in thick Modeled as polyethylene (CH₂) Average Density: 1.226 g/cc

